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Abstract

For a general univariate "errors-in-variables" model, the maximum

likelihood estimate of the parameter vector (assuming normality of the

errors), which has been described in the literature, can be expressed in

an alternative form. In this form, the estimate is computationally

simpler, and deeper investigation of its properties is facilitated. In

particular, we demonstrate that, under conditions a good deal less

restrictive than those which have been previously assumed, the estimate

is weakly consistent.
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1. Introduction.

The estimation of linear regression parameters when some variables

cannot be ascertained due to measurement or observation error is a

problem with a long history in the statistical literature, yet one with a

considerable recent emphasis. We consider a general "errors-in-variables"

model in which some subset of the variables is observed with error (much

of the literature concerns the case in which all variables are subject to

error, with particular emphasis on models with just one independent

variable; see Moran (1971) and Kendall and Stuart (1961, Chapter 27)).

Our model is

Y = X1  l + X2  B2 + E C = X2 + U
nxl nxp1 p 1xl nxp 2 P2xl nxp2

where 81 and 2 are vectors of regression parameters to be estimated, Y

and C consist of observable random variables, X1 and X2 consist of

constants but X1 is known and X2 is not, and c and U are composed of

random variables such that the rows of [U c] are i.i.d. with mean zero

and unknown non-singular covariance matrix E = [ . (Models such
Eu

as this with the independent variables being constants have generally

been referred to under the title "linear functional relationship." A

related model in which the variables are stochastic has been called a

"linear structural relationship"; see Madansky (1959) for discussion.)

Although in our discussion n will vary, there should be no confusion if

we do not subscript the matrices involved.

We consider maximum likelihood estimation under the assumption

that the errors are jointly normally distributed. It is well-known that
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the supremum of the likelihood is infinite unless we impose additional

structure on ): (and furthermore, that under any conditions on E which

yield a solution to the likelihood equations, the estimate obtained is

the same as that obtained by the method of weighted least squares). The

assumption most frequently made in the literature, and one which we will

adopt, is

2 1
(1.1) E = a2 E

o  o2  with % known.
C' o

The most detailed results along these lines can be obtained from the work

of Gleser and his students, who considered multivariate regression

models. In our model, let

W = [C Y]' R[C Y] with R = I - XI(X'X 1)-I X

(1.2)

= X P I(E0 1 W) (Ai(A) denotes ith largest eigenvalue of A)

and

g' = (g, g2 ) is an eigenvector associated with 0

lxl

Ilealy (1975) has shown that if g2 
* 0, then the MILE's of 81 and 62

exist and are given by:

A -1
a2 = -g1g 2

(1.3)
a (XiXI) 1 X,(Y-C 2 )

1 2
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In Section 2, we demonstrate that the MLE can be expressed in

alternate forms which are easier to interpret than (1.3), as well as

computationally simpler. These "simpler forms" also facilitate deeper

investigation of certain properties of the estimate. In Section 3, we
A A

consider one such aspect: we demonstrate that 81 and a2 are weakly

consistent estimates under conditions weaker than those which have been

previously shown.

2. The NLE under Normality.

In this section, we will make use of the following obvious notation:

X [XI X2 ] =

C* [X C]

= [i ] p=Pl +P 2

u* = [0 U]

we define , E* E* analogously. Also, let H = [C* Y]' [C* Y].
0' uo' Cuo

The main result of this section is:

Theorem 1. In our model, if the joint distribution of the errors is

absolutely continuous with respect to Lebesgue measure, then the

normality-MLE of a exists almost surely and is given by

A 1
82 = (C'RC -0uo) (C'I RY- BEEu o )

(2.1)

A A

a= (X. X1) Xi(Y-C82 ) ,

with 0 and R given by (1.2); we also have
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(2.2) a = (C* C* ozE )- (C* Y - uo)

with 0 = y ,Y = largest root of E* - yHI = 0.
0

A

In the form (2.2), a can be viewed as a modification of the ordinary

least squares regression estimate, which is known to be inconsistent in

the errors-in-variables (E.I.V.) case. In fact, the estimate seems to

operate much like the "method-of-moments" estimate described by Fuller

(1980). In an E.I.V. model in which Eu and E u can be consistently and

independently estimated but are otherwise unknown, Fuller has proposed

estimates such as

A A -1A
A(C*1 C* -nE*)l (C*u Y -nE*)

U uu

Under the assumption that n 1 X' X converges to a finite matrix,

Healy (1975) showed that n-;1 consistently estimates a2 ; hence

n-1 uo P. Eu in our model. Thus, while Fuller's method requires an

"external" variance estimate, the maximum likelihood approach in effect

produces its own "internal" estimate. Of course we do not get this for

free; the price we have paid is the additional structure that we have

imposed upon E.

In proving Theorem 1, we will make use of the following result:

Lemma 1. Under the conditions of Theorem 1, 0 = P (E W) is not an

eigenvalue of C' RC with probability one.
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Proof. Let G - 11 G 12 be the matrix of norlize eigenvectors

1 X j -11
associated with te (ordered) eigenvalues of E-1 W, with F =G

partitioned similarly. Thus

(2.3) E_ = GDF
0

with D = , X = diag(Xl(Y W),..., p ( W)). Equation (2.3)

implies that

(2.4) C' RC = (Euoll +  )EuoG21)(X-0 P2)FI1 + 01P2

From Gleser (1981), we infer that Fu0G + E uoG2 1 and F11 are

non-singular a.s. if the error distribution is absolutely continuous; it

follows from a result of Okamoto (1973) that the eigenvalues of Z 1 W are

distinct with probability one (all we need is 0 e X (Eol W)), in which
P2  o

case A- 01 is non-singular. The result follows since (2.4) implies

that C' RC - 0! is non-singular a.s.

Proof of Theorem 1. From the definition of 0 and G,

C' RC- ORuoY-KZ G 1

(2.5) = 0
' RC - Ou Y' RY- e LG22j

(leser (1981) has shown that G2 2 * 0 a.s., in which case the MIE exists.

As mentioned above, 0 has multiplicity one a.s., so the left-hand matrix

has rank P2 w.p. 1, and solutions to (2.5) will be determined by
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equations corresponding to any P2 linearly independent rows of that

matrix. In light of Lemma 1, the first P2 rows will do:

(2.6) (C' RC - 0EuO)G 12 + (C' RY - 0ECuo)G 22 = 0

-G1 2G21 = (C'RC-Ouo' (C' RY - BEu)
12 2 Cuo

A

By (1.3), this is B2, which demonstrates (2.1).

For the second part of the theorem, note first that

H- 1 * = 0 W0 o:1

from which it follows that 0 of eq. (2.2) is the same as that of (1.2)

A
(in this part of the theorem, we want to express B in a form which does

not explicitly refer to our partitions of the matrices involved).

Now according to (2.2),

Xi 1) 1+ ( ) -I X, cQc'X, x l )  (Xiy --QC' ×1(X i Xl) -1 Q , -Ozo]

(with Q = (C'RC-E Ouo) -

Xi 1 - (X X )  X cIQc' Y- ) QC' X(X'X) Xi

Q(C' Y- E. u QC' X1 (X X1) Xi y

which implies
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i 2 = )Q(C' RY ) = (C' RC - O ) (C' RY o )
2 10 110 CUO)

A AI= (X x) X1 xi (Y- U 2)

These agree with (1.3) and (2.6). 0

3. Consistency.

A
Various results concerning weak and strong consistency of a in our

model and related models have been described by Healy (1975), Bhargava

(1975), and Gleser (1981). Generally, all require that

-1
(3.1) lim n X' X exists and is positive definite

Such a condition on X is much stronger than conditions which have been

shown to be sufficient for consistency of the usual linear regression

estimate (the special case of our model with p2 = 0). In recent years,

results of increasing strength and generality on this matter have been

produced: see Eicker (1963), Drygas (1976), Anderson and Taylor (1976),

Lai et al. (1979). Conditions on the errors vary somewhat among these

papers, but the condition on X which is crucial to all of them is

(3.2) X (X' X) - - as n - -o

We would like to find conditions "intermediate" between (3.1) and (3.2)

A
which are sufficient for weak consistency of B.

Theorem 2. If the foIZowing conditions on X are satisfied:

(A.1) n X(X' X) as n -
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(A. 2) (X'X)x (X' X) - o as n - •
I p

and the joint dIstribution of the errors possessec finite fourth moment,

then as n - o. (Note that we are obtaining consistency without

using the assumption that the errors are normally distributed.)

The following simple lemma will be useful:

!.er .? 2. (£) x 1(X RX2) !5 X 1(X' X) ;

-l 2(X )-1

(ii) letting (X' X) 1 , = 1 L 2 ]" xI(L 2 L ) i X 1 ('

-1P -lP

Proof. Since (X IX 2)I is the lower right-hand submatrix of (X' X)

x (X' X) inf Z'(X'X)- Z - inf Z'(X RX2)-I z = (X'RX2)-
lZH=l II =1 P2

> XI(X' X) A IxN RX2 )

Noting that the non-zero eigenvalues of L2L and L L2 are identical,

(ii) follows similarly since L L2 is a lower right-hand submatrix of

(X' X)

Proof of Theorem 2.

A -I

6 (C*I C* - OZ* )1(~ 7uo Cuo

= (I + (X' X) 1 (X'U* + U*'X + (U*'U* - nE*) + (no2 - I)X*o)-
p u uo

x (X' X)- (X' Y + U* XB + (U*' E - nZ* + (no2 - O)Z .
Cu Cuo
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Clearly, it will suffice to show that:

(i) (X' X) - X'U* 0

(ii) )X') U1 I*X P 0

(iii) (X' X) - I (U*'U* - nZ*) P 0
u

2 1iP
(iv) Ino - O(X'X) 0

(v) (X' X)-I X, PY P

(vi) (X'X) (U*f C nE* ) P- 0

Eicker (1963) has shown (v) when X (X' X) - , which is of course true by

(A.); (i) also follows immediately from his work under the same

condition.

Note that U*'U* - nZu = 0 (n) if the errors have finite fourthu p 1
moments, so (iii) holds if (X' X) 1 = o(n ), which follows from (A.1).

The same argument demonstrates (vi). (X' X) U*' X = L2 U' X; the

(i~j)th element has mean zero and variance X2  . P, F P. where P. isij) eeethsmazeok J lul' 1
thk 

ui1

the i column of L,. Thus (ii) is satisfied if

max diag(X' X) • max diag(L 2L) - 0; this is seen to be equivalent to

(A.2) using Lemma 2(ii).

Letting k henceforth denote XI(X' X)-1 we need only demonstrate
(iv), which is equivalent to k(0 -no 2) P 0. Note that -= 1P2+lU 0 l W)

) - 0.Nt2 ht0 ~+( 0 Wif and only if ki0 -no 2  = P2 +(k(io W-no 2  )) we will show that

this converges to zero in probability. Let
IX2RX2X 2 RX2 0 -

D = kTo- L j. As the product of a positive definite
02 RX2  T RX2

matrix and a positive semi-definite matrix of rank P2, D has P2 positive

I
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eigenvalues, its other eigenvalue being zero. Now

k(Eo1W -no I )-D0P2+1)

k X1 R + X R U'RX2  
U' RX2 B  + X RE -1

0
jXRU + c'IRX 6 ~XRE + elR 2~Ru R2  2 RX2a2

+ kE { f[U cl [U E] - n }+ k-E 1[U cji' (R-I)[U E]
00 n

='h + M2 + M3 , say

Using arguments essentially the same as before, Ml p - 0 by (A.2) and

Lemma 2(i). M2 does likewise since k = o(n-2). Finally, noting that

-R is idempotent, we deduce that E[M3] = -o2 kPlIp2+ 1. The diagonal

elements of the positive definite matrix EoM3 are positive with

expectations going to zero; thus they are o p(1) themselves.

Consequently, M3 P 0.

Since eigenvalues are continuous functions of a sequence of

matrices, it follows from the above discussion that

+(k(Eo I W - n I2 )) P (D) = 0, and hence k(0-no2) 2R 0. c

Our assumptions (A.1) and (A.2) are intermediate in the sense

mentioned earlier: either one implies (3.2), while both are implied by

(3.1). Condition (A.1) requires that X' X "gets large" at a faster rate

than does (3.1) (it can be seen by considering the demonstration of

(iii), e.g. in the proof of Theorem 2, that (3.2) is too weak a condition

for our model). A simple example in which (3.1) is too weak to ensure

consistency, but where (A.1) suffices, is a situation where p = P2 = 1,
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and the independent variable varies linearly with n. Condition (A.2)

will also hold much more generally than (3.1); it is satisfied, for

example, if (A.1) holds and the independent variables are bounded.

Finally, while our requirement of fourth moments of the errors is not

particularly restrictive, we could weaken it if we were willing to

strengthen (A.1) (for example, we would require only finite (2+6)th

moment, 0 : 6 ! 2, if n - [ 2 ( 2 + 6 ) - ] X p(X' X) + as n c).
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